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Three cases of radiat ive heat  transfer are considered: between surfaces, between a surface and a volume, 

and between volumes. It is shown that a l l  three cases can be described by means of the notion of a gen-  
era l ized mutual  surface. 

There are three fundamental ly  different cases of radia t ive  hea t  transfer between bodies: radia t ive  heat  transfer be -  
tween surfaces, between a surface and a volume, and between volumes, The first case arises when both bodies are 

opaque, the second when one body is opaque and the other semitransparent,  and the third when both bodies are semi-  

transparent. 

The considerations in the present paper, as well  as the whole theory of radia t ive  hea t  transfer between bodies, are 

based on the assumption that the processes take p lace  in a gray medium.  

Radiative heat  transfer between bodies is quant i ta t ively  described by the mutual  radiat ion shape factor H. 

The mutual  shape factor of surfaces i and k is 

/-/(i, k) = ~ -  cos D~ c o s G  x -2 exp  (---k x) d F  i d F  k . (1) 

"Pi Fk 

The mutual  radiat ion shape factor is, as we shall see below, a fundamental  quantity in a l l  cases of radiat ive heat  
transfer. It is often ca l led  the general ized mutual  surface. 
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Fig. 1. Geometr ic  quantities used in the determinat ion of the mutual  shape factor of 

a surface and a volume (a) and between two volumes (b). 

The shape factor of surface i and volume q (Fig. l a )  is 

HF--v(i'q)= 1---; ; kqcOsOix 'exp(-'i~x) d F i d V q ' r :  (2) 

F i Vq 

and that of volumes p and q (Fig. lb)  is 

Vp Vq 

Using these factors, we obtain the expression for the energy emi t ted  by surface i and intercepted by surface k 

Q (i, k) = ~ o0 T~ H (i, k). (4) 
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Similarly, the energy emitted by surface i and absorbed by volume q is 

= T 4 Qabs (i, q) H F - v  (i, q) z i (to f , 

the energy emitted by volume q and intercepted by surface i is 

Q (q, j )  - g F - v  (i, q) (to T~, 

and the energy emitted by volume p and absorbed by volume q is 

(5) 

(6) 

Qabs(V, q) = Hv-v (p, q) aoT4p . (7) 

During the calculation of the quantity H(i, k), the integral in (i) should extend only over those surface elements 
which can "see" each other directly. For elements lying in the shade, the integrand is assumed to be zero. This method 
of calculating H(i, k) is suitable for cases involving heat transfer between surfaces. 

In order to apply this notion to cases involving heat transfer between a surface and a volume, or between two vol- 
u_mes, it must be generalized by extending the integral also over the shaded parts of the surface. The expression for 

H(i, k) can be based either on the outer surface of the volume, or on the inner surface. If  we adopt the convention that 
the angle 1~ is always measured in clockwise sense from a direction opposite to the ray to the normal to the surface ele- 
ment, then cos ~, as can be seen in Fig. 1, will be equal in magnitude for both methods of calculation, but it will be 
negative in the case of the first method, and positive in the second. Therefore the quantities H(i, k) calculated for a 
given part of  the shaded surface by the two methods will also differ only in sign. 

The integral of (1) over the whole outer surface (k) of a given volume shall be denoted by Hc(i o, ko). 

Consider a beam emitted by a surface element dF i (Fig. la) .  The quantity dVq, representing the portion of the 
volume q pierced by this beam, can be replaced by x~dwdx. Equation (2) now becomes 

4 
Hr._v(i, q)= l f ds, ; cos~dto ; (8) 

F i x k 

We shall need the identity 

x 

d exp (-- k x ) =  d exp ( - -  o(kdx) = - -  exp (-- -s kqdx. (9) 
o 

x 

The quantity kq in the last term of (9) is the value of k at the point q and appears upon differentiation of ~ kdx  . 
0 

According to (9), we substitute --d(exp(--kx)) for kq(eXp(--kx)) in (8), and integrate from x~ to x~. This yields 

He-v(i, q) ~- I dE i cos~ i e x p ( - k x k ) d t o -  - -  dF i cos~iexp (---,kxk) dto. (10) 

F i oJ F i co 

The element of solid angle dw can be written in terms of surface area elements of the portion of k which faces 
surface i 

d to = (cos 8ff(x~) ~) dFk, (11) 

as well as in terms of elements of the shaded surface, in which case 

d to = (cos ~pff(x~) 2) dF k ~ - -  (cos Uff(x's 2) dF k. (12) 

Substitute (11) into the first term of (10), and (12) into the second term. This yieIds 

H F - v ( i , q ) =  1 ; d F i ;  COS~iCOSl}k --s (xk)2 exp  ( - -  -k x'k) dF k ~- 

F~ F~ (la) 

-k 1 ~ d F i (  cos~icos~k exp(---kx~)dF,. 

Fi F k 
! 

In the first term the integration extends over the surface F k, which faces the surface Fi, and in the second term it 
extends over the surface F k, which faces in the opposke direction. In both integrals the quantities x k and x k represent 

1 
the distances from surface elements dF i to corresponding elements of F k and F~. Therefore the sum of the integrals in 
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expression (13) is equal to the integral of the quantity COS {}i COS,~)k exp ( /-~&e) over the whole surface Fk: 
2 

Xte 

HF--V(i, q) = ~ -  COS~iCOS0kX ~ exp(--tTxk) dFidF k 

F i F k 

(~4) 

Comparing this expression with formula (1), we see that the quantity HF_V(i, q) represents none other than the 
mutual shape factor of the surface i and the outer surface of the volume under consideration: 

n 

Hr-v (i, q) = G (io, ko). (15) 

Because a surface integerat is equal to the sum of the surface integrals over the parts o f  the surface, 

 o(io, ko) (16) 

The subscript "o" indicates that during the calculation of H the integration extends over the outer surface of the 
volume. In those cases in which the quantity H(u, 8) is obtained by integration over the inner surface, it should be sub- 
stituted in (16) with a minus sign. 

In the case when the absorption coefficient is equal to zero throughout the volume, we have 

H c (i o, ko) = O. (17) 

The elementary volume dVq pierced by a beam emitted by the element dVp (Fig. lb) can be replaced by xZdwdx. 

Carrying out this substitution, we reduce Eq. (3) to 

4 
Hv-v(p, q ) =  ,~- kpdVp dw kqexp(---kx)dx. (18) 

Vp ,t, 
x k 

In this case the integrand of the last integral can be replaced according to (9). After integration over x and re- 
placement of dw by (11) and (12), as we did in the case of radiative heat transfer between a surface and a volume, we 
obtain 

Hv-v(p, q) = + ;kpdVp l cosO,~x~2exp(-- (19) 

Vp Fk  

Changing the order of integration in (19), we obtain 

Hv_v(p, q) = -l- f dFk y kpcos{}kx72exp(---kx~) dV (20) 

G vp 

Fixing the position of the surface element dF k, we replace dVp by x[dwdx: 

x i 

Hv_v(p, q)= 1 ; d F ~ ;  cos,3ad(o S hpexp(---kxk) dX k. (21) 
F k m 

x i 

The integrand in the last integral in (21) can be replaced according to the identity 

d e x p  ( - -  kxk) = ~ exp  (-- ~xk) kpdx, (ss) 

which is analogous to (9), Formulas (11) and (12) are also valid, if the angle &k is replaced by &i" Let us replace the 
integrand in (21) in accordance with (22), and integrate the resulting expression over x k between the boundaries of the 
volume. 

After substituting (11) and (12) for dw, as we did before, we obtain 
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Hv_v(p, q) = 1 I f ~) -2 - -  c o s r  kx~ exp(---kx~)dF~dF~. (23) 

Comparing this expression with (1), we findthat the mutual shape factor of two volumes is none other than the 
mutual shape factor of their outer surfaces: 

, .Hv -v  (p, q) -= Hc.c(i o, ko). (24) 

The double subscript on the right-hand side of the equation indicates that during the calculation of H the integra- 
tion extends over two closed surfaces. 

By analogy with what we did before, we can write 

Hc.c(io,  k o ) =  ~ 2 H (%, [3o). (25) 

Discussion of special cases. We shall find the mutual shape factor of two volumes p and q of cubic form, whose 
bases lie in a common plane, and with side faces perpendicular to the line joining the centers. The absorption coeffi- 
cient is assumed to be constant. 

According to formula (25), the mutual shape factor of the two volumes is equal to the algebraic sum of the 36 
mutual shape factors of pairs of faces. However, in view of symmetry, many of the shape factors will be equal. 

Let us_choose the following seven shape factors as fundamental: 1) between the inner faces H(1, a); 2) between the 
outer faces H(2, b); 3) between an inner__and an outer face H(1, c); 5) between an out_or face and any of the side faces 
H(2, c); 6) between parallel side faces H(3, c); 7) between perpendicular side faces H(4, c). 

Let us write down all 36 components H(i o, ko), combining each face of volume p with each face of volume q. The 
subscript o shall remind us that the shape factors refer to the outer surfaces of the voIumes. 

For those components which refer to pairs of faces which see each other's outer sides, or those which see each 
other's inner sides, we drop the subscript o. For those components which refer to configurations in which one face sees 
an outer side and the other face sees an inner side, we drop the subscript o and add a minus sign. 

Collecting all identical terms, and representing the result in terms of the seven shape factors listed above, we 
obtain 

Hv-v(p, q) = Hc.c(io, k o) = H (1, a) + H (2, b ) -  2H ( I ,  b) + 4H(3 ,  c ) - -  

- -  8/~ (1, c) + 8H (2, c! + 8~r (4, c). 

Replacing the mutual shape factors by generalized irradiation factors O, we obtain 

Hv-v(p, q) = F, [4 (1, a) + ,+ (2, b ) - -  2 4 (1, b) + 

+ 4q~ (3, c ) -  8,5 (I, c) + 8,~ (2, c) -~- 84 (4, c)]. 

The method of calculation described here can also be used to calculate the mutual shape factor of volumes. Let 
us find the mutual shape factor for a simpler case: two volumes p and q each of which is bounded by two surfaces. One 

pair of these surfaces, one of each volume, see each other's inner sides, and the other pair 

if 

C5 
b 

Fig. 2. Examples of two 
volumes with each bound- 
ing surface divided into 
two parts. 

see each other's outer sides (Fig. 2a). Using the present method, we can write immediately 

Hv-v(p, q) = ~r (1, 4) 4 - B  (2, 3 ) - -  H (2, 4 ) - -Hi1 ,  3). 

In the special case when_the two volumes adjoin each other and are separated by a 
plane (Fig. 2b), the quantity H(1, 4) will be equal to the separating surface. 

Representing the other terms by irradiation factors, we obtain 

Hv-v(p, q) = Fa +S~,5 (2, 3)--F1 [4 (1,2)-t ? (1,311. 
NOTATION 

k - coefficient of absorption of the medium, variable throughout the volume; 
x 

~-= lx .I "kdx - -mean absorption coefficient on the ray x; kp and k q -  true values of 

0 

the absorption coefficient at the points p and q; 9 i and I~ k - angles between the direction 
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of the beam and the normals to the surface elements dF i and dFk; ~i - e m i s s i v i t y  of surface i; T - a b s o l u t e  tempera-  
ture; oJ - s o l i d  angle subtended by votume q at the surface e lement  dFi; ~(i,,k) - g e n e r a l i z e d  irradiation factors for the 
irradiation of surface k by surface i; ek  - angle between the direction opposite to the beam and the inner normal to a 
surface; c~ and B - parts of the surfaces i and k; F i - the surface area of an individual face. 
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